In vivo dark-field reflection-mode photoacoustic microscopy.
نویسندگان
چکیده
Reflection-mode photoacoustic microscopy with dark-field laser pulse illumination and high-numerical-aperture ultrasonic detection is designed and implemented in noninvasively imaged blood vessels in the skin in vivo. Dark-field optical illumination minimizes the interference caused by strong photoacoustic signals from superficial structures. A high-numerical-aperture acoustic lens provides high lateral resolution, 45-120 microm in this system. A broadband ultrasonic detection system provides high axial resolution, estimated to be approximately 15 microm. The optical illumination and ultrasonic detection are in a coaxial confocal configuration for optimal image quality. The system is capable of imaging optical-absorption contrast as deep as 3 mm in biological tissue.
منابع مشابه
ast 3 - D dark - field reflection - mode photoacoustic icroscopy in vivo with a 30 - MHz ultrasound inear array
ihong V. Wang ashington University in St. Louis ptical Imaging Laboratory epartment of Biomedical Engineering t. Louis, Missouri 63130 -mail: [email protected] Abstract. We present an in vivo dark-field reflection-mode photoacoustic microscopy system that performs cross-sectional B-scan imaging at 50 Hz with real-time beamforming and 3-D imaging consisting of 166 B-scan frames at 1 Hz wit...
متن کاملDeep reflection-mode photoacoustic imaging of biological tissue.
A reflection-mode photoacoustic (PA) imaging system was designed and built to image deep structures in biological tissues. We chose near-infrared laser pulses of 804-nm wavelength for PA excitation to achieve deep penetration. To minimize unwanted surface signals, we adopted dark-field ring-shaped illumination. This imaging system employing a 5-MHz spherically focused ultrasonic transducer prov...
متن کاملSingle-wavelength functional photoacoustic microscopy in biological tissue.
Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength ...
متن کاملReflection-mode submicron-resolution in vivo photoacoustic microscopy.
Submicron-resolution photoacoustic microscopy (PAM) currently exists only in transmission mode, due to the technical difficulties of combining high numerical-aperture (NA) optical illumination with high NA acoustic detection. The lateral resolution of reflection-mode PAM has not reached <2 μm in the visible light range. Here we develop the first reflection-mode submicron-resolution PAM system w...
متن کاملReflection-mode multifocal optical-resolution photoacoustic microscopy.
Compared with single-focus optical-resolution photoacoustic microscopy (OR-PAM), multifocal OR-PAM utilizes both multifocal optical illumination and an ultrasonic array transducer, significantly increasing the imaging speed. A reflection-mode multifocal OR-PAM system based on a microlens array that provides multiple foci as well as an ultrasonic array transducer that receives the excited photoa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 30 6 شماره
صفحات -
تاریخ انتشار 2005